Skip to main content
Article thumbnail
Location of Repository

Quadratic Regularization Design for 2-D CT

By Hugo R. Shi and Jeffrey A. Fessler


Statistical methods for tomographic image reconstruction have improved noise and spatial resolution properties that may improve image quality in X-ray computed tomography (CT). Penalized weighted least squares (PWLS) methods using conventional quadratic regularization lead to nonuniform and anisotropic spatial resolution due to interactions between the weighting, which is necessary for good noise properties, and the regularizer. Previously, we addressed this problem for parallel-beam emission tomography using matrix algebra methods to design data-dependent, shift-variant regularizers that improve resolution uniformity. This paper develops a fast angular integral mostly analytical (AIMA) regularization design method for 2-D fan-beam X-ray CT imaging, for which parallel-beam tomography is a special case. Simulation results demonstrate that the new method for regularization design requires very modest computation and leads to nearly uniform and isotropic spatial resolution in transmission tomography when using quadratic regularization

Publisher: IEEE
Year: 2008
DOI identifier: 10.1109/TMI.2008.2007366
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.