Skip to main content
Article thumbnail
Location of Repository

Progesterone inhibits insulin-like growth factor binding protein-1 (IGFBP-1) production by explants of the Fallopian tube

By S. Davies, M.C. Richardson, F.W. Anthony, D.D. Mukhtar and I.T. Cameron


The Fallopian tube provides the environment for early embryo growth, a process which is influenced by insulin-like growth factors (IGFs) in the tubal fluid. Whether the bioavailability of tubal IGFs is modulated by locally produced IGF-binding protein (IGFBP-1) is not clear. An explant culture system from human Fallopian tube mucosa was, therefore, developed enabling the potential for IGFBP-1 production by this tissue to be examined directly. Initial characterization of the system established that the explants maintained responsiveness to steroids. Thus, oviduct-specific glycoprotein production, a major product of the oviduct in vivo, continued to be made via an estrogen-sensitive pathway in the culture. The presence of mRNA for IGFBP-1 was established within the explants by the use of quantitative RT–PCR and IGFBP-1 protein was measured by enzyme-linked immunosorbent assay. Although insulin and estradiol had no consistent effect on IGFBP-1, addition of progesterone had a significant inhibitory effect on IGFBP-1 production, both at the mRNA and protein levels. A dose-range of progesterone revealed an incremental inhibitory effect of progesterone on IGFBP-1 output (maximal effect, 25–50 nmol/l), consistent with physiological inhibition of this process during the luteal phase. We suggest that progesterone might, therefore, play a role in controlling the bioavailability of IGFs to the embryo during early development within the Fallopian tube

Topics: RG
Year: 2004
OAI identifier:
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.