Article thumbnail

Unsupervised Extraction of Flood-Induced Backscatter Changes in SAR Data Using Markov Image Modeling on Irregular Graphs

By Sandro Martinis, André Twele and Stefan Voigt

Abstract

The near real-time provision of precise information about flood dynamics from synthetic aperture radar (SAR) data is an essential task in disaster management. A novel tile-based parametric thresholding approach under the generalized Gaussian assumption is applied on normalized change index data to automatically solve the three-class change detection problem in large-size images with small class a priori probabilities. The thresholding result is used for the initialization of a hybrid Markov model which integrates scale-dependent and spatiocontextual information into the labeling process by combining hierarchical with noncausal Markov image modeling. Hierarchical maximum a posteriori (HMAP) estimation using the Markov chains in scale, originally developed on quadtrees, is adapted to hierarchical irregular graphs. To reduce the computational effort of the iterative optimization process that is related to noncausalMarkovmodels, a Markov random field (MRF) approach is defined, which is applied on a restricted region of the lowest level of the graph, selected according to the HMAP labeling result. The experiments that were performed on a bitemporal TerraSAR-X StripMap data set from SouthWest England during and after a large-scale flooding in 2007 confirm the effectiveness of the proposed change detection method and show an increased classification accuracy of the hybrid MRF model in comparison to the sole application of the HMAP estimation. Additionally, the impact of the graph structure and the chosen model parameters on the labeling result as well as on the performance is discussed

Topics: Zivile Kriseninformation und Georisiken
Publisher: 'Institute of Electrical and Electronics Engineers (IEEE)'
Year: 2011
DOI identifier: 10.1109/TGRS.2010.2052816
OAI identifier: oai:elib.dlr.de:66326
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doi.org/10.1109/TGRS.2... (external link)
  • https://elib.dlr.de/66326/ (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles