Location of Repository

Quantum cores of optical phase singularities

By M.V. Berry and M.R. Dennis

Abstract

The nodal line singularities (optical vortices) of classical scalar optics are smoothed in quantum optics, because of spontaneous emission into unoccupied modes. The radius of the 'quantum core' surrounding each classical singularity is proportional to ??. A trapped excited atom, steered into a nodal line of the classical field, is a possible detector for the effect. Analogous phenomena are anticipated for other waves, for example sound, where the silence at a nodal line is disturbed by pressure fluctuations of the fluid molecules

Topics: QA, QC
Year: 2004
OAI identifier: oai:eprints.soton.ac.uk:29388
Provided by: e-Prints Soton

Suggested articles

Preview

Citations

  1. (1977). A and Salpeter
  2. (2002). A laboratoryanalogueof the event horizon using slow light in an atomic medium
  3. (1966). Antinormallyordered correlationsand quantum counters Phys.
  4. B 1838 On the intensityof light in the neighbourhood of a caustic Trans.
  5. (1980). Catastropheoptics: morphologiesof causticsand their diffractionpatternsProg.
  6. (2002). Coloured phase singularitiesNew
  7. (1974). Dislocationsin wave trains
  8. (2002). Exploring the colours of dark light
  9. (2001). Geometry of phase and polarization singularities,illustratedby edge diffractionand the tides SingularOptics
  10. (1998). Much ado about nothing: optical dislocation lines (phase singularities,zeros, vortices...)SingularOptics (Frunzenskoe,Crimea)
  11. (1999). Natural Focusing and Fine Structureof Light: Caustics and Wave Dislocations(Bristol:
  12. (1995). Optical Coherence and Quantum Optics (Cambridge:
  13. (2000). Phase singularitiesin isotropicrandom waves
  14. (1992). Rays, wavefrontsand phase: a picture book of cusps Huygens’ Principle 1690–1990;Theory and Applicationsed H Bok and H A Ferwerda (Amsterdam: North-Holland)pp 97–111
  15. (1981). Singularitiesin waves and rays Les Houches Lecture Series Session vol 35,
  16. (2002). Theory of a slow-light catastrophePhys.
  17. (2000). TheQ uantum Theory of Light

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.