Skip to main content
Article thumbnail
Location of Repository

Testing the Cenozoic multisite composite ?18O and ?13C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207)

By Philip F. Sexton, Paul A. Wilson and Richard D. Norris


Until recently, very few high-quality deep ocean sedimentary sections of Eocene age have been available. Consequently, our understanding of Eocene paleoceanography has become heavily reliant on “composite” records patched together from multiple sites in different ocean basins and generated using multiple taxa (potential sources of “local” noise in the global signal). Here we test the reliability of the early to middle Eocene composite ?18O and ?13C stratigraphies (Zachos et al., 2001) by generating new monospecific records in benthic foraminiferal calcite from a single locality, Demerara Rise, in the tropical western Atlantic (Ocean Drilling Program Leg 207). We present new stable isotope correction factors for commonly used Eocene benthic foraminiferal species. We find that interspecies isotopic offsets are constant across the isotopic range, supporting the notion that the inconstant intertaxa offsets reported elsewhere result from mixing species within genera. In general, the ?18O stratigraphy from Demerara Rise supports the validity of the Eocene ?18O composite, while revealing a temporary warming punctuating middle Eocene cooling. This warming may correspond to the so-called “Middle Eocene Climatic Optimum” previously documented in the Southern Ocean. The composite and Demerara Rise records for ?13C differ substantially. By removing the intersite and intertaxa sources of uncertainty in ?13C, we obtain a clearer picture of carbon cycling during the Eocene. Secular change in interocean ?13C gradients through the Eocene reveals that intervals of climatic warmth (especially the early Eocene) are associated with very small water mass ageing gradients

Topics: QE, GC
Year: 2006
OAI identifier:
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.