Article thumbnail

Chemical-Looping Combustion (CLC) and Reforming (CLR): Closing the Gap between Simulation and Experimentation

By Zhiquan Zhou

Abstract

Chemical-looping combustion (CLC) is a method for the oxidation of hydrocarbons with in-situ O2 separation, resulting in energetically inexpensive CO2 sequestration. The basic concept of the process involves using a metal oxide as an oxygen carrier (OC) to transfer oxygen from an Oxidizer reactor to a Reducer reactor, where the hydrocarbons are oxidized by the lattice oxygen of the OC. The reduced oxygen carrier is then re-oxidized in the Oxidizer. Chemical-looping with oxygen uncoupling (CLOU) is very similar to normal CLC, with the major difference that the process employs certain metal oxides as oxygen carriers. CLOU takes advantage of the exothermic and spontaneous splitting of some metal oxides at high temperature, resulting in an overall thermodynamically favorable process for the transport of oxygen between the two reactors. The aim of this dissertation is to provide insights to the feasibility and efficiency of CLC, by closing the gap between simulation and experimentation in bench- and pilot-scale chemical-looping processes. The key ideas in this dissertation are to combine experimentation and dynamic simulation, understand the current experimental procedures for chemical-looping, and expand the laboratory finding to conceptual commercial systems

Topics: Chemical-looping, Carbon Capture, Kinetics, Reactor modeling
Publisher: OpenCommons@UConn
Year: 2015
OAI identifier: oai:opencommons.uconn.edu:dissertations-6872
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://opencommons.uconn.edu/... (external link)
  • https://opencommons.uconn.edu/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.