This thesis proposes a method of finding initial parameter estimates in the Log ACD1 model for use in recursive estimation. The recursive estimating equations method is applied to the Log ACD1 model to find recursive estimates for the unknown parameters in the model. A literature review is provided on the ACD and Log ACD models, and on the theory of estimating equations. Monte Carlo simulations indicate that the proposed method of finding initial parameter estimates is viable. The parameter estimation process is demonstrated by fitting an ACD model and a Log ACD model to a set of IBM stock duration data
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.