Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 µm - 5 µm

Abstract

We have performed numerical simulations to investigate the optimization of compound glass microstructured optical fibers for mid IR supercontinuum generation beyond the low loss transmission window of silica, using pump wavelengths in the range 1.55-2.25 µm. Large mode area fibers for high powers, and small core fiber designs for low powers, are proposed for a variety of glasses. Modeling results showed that for Bismuth and lead oxide glasses, which have nonlinearities ~10 x that of silica, matching the dispersion profile to the pump wavelength is essential. For chalcogenide glasses, which have much higher nonlinearities, the dispersion profile is less important. The pump pulses have duration of <1 ps, and energy <30 nJ. The fiber lengths required for generating continuum were <40 mm, so the losses of the fibers were not a limiting factor. Compared to planar rib-waveguides or fiber-tapers, microstructured fiber technology has the advantages of greater flexibility for tailoring the dispersion profile over a broad wavelength span, and a much wider possible range of device lengths

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.