Article thumbnail

Feel the Moosic: Emotion-based Music Selection and Recommendation

By Patrick Helmholz, Michael Meyer and Susanne Robra-Bissantz


Digital transformation has changed all aspects of life, including the music market and listening habits. The spread of mobile devices and music streaming services has enabled the possibility to access a huge selection of music regardless of time or place. However, this access leads to the customer\u27s problem of choosing the right music for a certain situation or mood. The user is often overwhelmed while choosing music. Context information, especially the emotional state of the user, can help within this process. The possibilities of an emotional music selection are currently limited. The providers rely on predefined playlists for different situations or moods. However, the problem with these lists is, that they do not adapt to new user conditions. A simple, intuitive and automatic emotion-based music selection has so far been poorly investigated in IS practice and research. This paper describes the IS music research project Moosic , which investigates and iteratively implements an intuitive emotion-based music recommendation application. In addition, an initial evaluation of the prototype will be discussed and an outlook on further development will be given

Topics: Music, Emotion, Mood, Recommendation, Context, Digital transformation, Business Intelligence, Management Information Systems
Publisher: AIS Electronic Library (AISeL)
Year: 2019
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.