Article thumbnail

Asymmetric crystallization during cooling and heating in model glass-forming systems

By Minglei Wang, Kai Zhang, Zhusong Li, Yanhui Liu, Jan Schroers, Mark D. Shattuck and Corey S. O'Hern

Abstract

We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature $T_l$ and cooled each sample to zero temperature at rate $R_c$. For the heating protocol, we first cooled equilibrated liquids to zero temperature at rate $R_p$ and then heated the samples to temperature $T > T_l$ at rate $R_h$. We measured the critical heating and cooling rates $R_h^*$ and $R_c^*$, below which the systems begin to form a substantial fraction of crystalline clusters during the heating and cooling protocols. We show that $R_h^* > R_c^*$, and that the asymmetry ratio $R_h^*/R_c^*$ includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system and a preparation-rate dependent contribution that increases strongly as $R_p \rightarrow R_c^*$ from above. We also show that the predictions from classical nucleation theory (CNT) can qualitatively describe the dependence of the asymmetry ratio on the GFA and preparation rate $R_p$ from the MD simulations and results for the asymmetry ratio measured in Zr- and Au-based bulk metallic glasses (BMG). This work emphasizes the need for and benefits of an improved understanding of crystallization processes in BMGs and other glass-forming systems.Comment: 8 pages, 7 figure

Topics: Condensed Matter - Soft Condensed Matter
Publisher: 'American Physical Society (APS)'
Year: 2015
DOI identifier: 10.1103/PhysRevE.91.032309
OAI identifier: oai:arXiv.org:1501.02186

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.