Skip to main content
Article thumbnail
Location of Repository

Real Belyi theory

By Bernhard Koeck and David Singerman


We develop a Belyi type theory that applies to Klein surfaces, i.e. (possibly non-orientable) surfaces with boundary which carry a dianalytic structure. In particular we extend Belyi's famous theorem from Riemann surfaces to Klein surfaces

Topics: QA
Year: 2007
OAI identifier:
Provided by: e-Prints Soton

Suggested articles


  1. (2006). alez-Diez, Variations on Belyi's theorem,
  2. (1991). Algebraic curves over ¯nite ¯elds", Cambridge Tracts in Mathematics 97, Cambridge Univ.
  3. (1981). Alling, \Real elliptic curves",
  4. (1996). Belyi functions, hypermaps and Galois groups,
  5. (1965). El¶ ements de g¶ eom¶ etrie alg¶ ebrique. IV. ¶ Etude locale des sch¶ emas et des morphismes de sch¶ emas.
  6. (1997). Esquisse d'un programme, in "Geometric Galois actions", Vol. I, London Math.
  7. (1971). Foundations of the theory of Klein surfaces",
  8. (1985). Foundations of the theory of maps on surfaces with boundary,
  9. (1979). Galois extensions of a maximal cyclotomic ¯eld,
  10. (2004). Graphs on surfaces and their applications",
  11. (1994). Maps, hypermaps and triangle groups, in \The Grothendieck theory of dessins d'enfants",
  12. (2004). ock, Belyi's Theorem revisited,
  13. (1960). Quasiconformal mappings and TeichmÄ uller's theorem, in \Analytic functions",
  14. (1997). The \obvious" part of Belyi's theorem and Riemann surfaces with many automorphisms, in \Geometric Galois actions",
  15. (1978). Theory of maps on orientable surfaces,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.