Investigation of the surface chemistry of phosphine-stabilized ruthenium nanoparticles - an advanced solid-state NMR study

Abstract

31P-13C REDOR NMR measurements allowed a reasonable approximation of distances between stabilizing ligands and carbon monoxide (CO) molecules on the surface of phosphine-stabilized ruthenium nanoparticles (RuNPs). The studied systems are RuNPs in the size range of 1-2 nm stabilized with 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine (PPh3) and exposed to a CO atmosphere. This study sheds some light on the interactions between CO and phosphine molecules as well as on their binding geometries on the surface of the RuNPs. As information on the ligand location and mobility is precious for the understanding of the chemical and catalytic properties of nanoparticles, these results support the interest of using sophisticated NMR tools to investigate their surface chemistry

Similar works

Full text

thumbnail-image

TUbiblio

redirect
Last time updated on 05/04/2020

This paper was published in TUbiblio.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.