A model for precipitation kinetics and hardening in Al-Cu-Mg alloys

Abstract

A physically-based numerical model is developed to predict the microstructural evolution and strengthening in Al Cu Mg alloys during isothermal treatments. The modelling of the formation kinetics of the precipitates is based on the Kampmann and Wagner model. The strengthening by the shearable Cu:Mg co clusters is modelled on the basis of modulus strengthening mechanism and the strengthening by the non-shearable S phase precipitates is based on the Orowan looping mechanism. The model predictions are verified by comparing with the strength and differential isothermal calorimetery data on 2024-T351 aluminium alloys. The microstructural development and strength predictions of the model are generally in good agreement with the experimental data

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.