Skip to main content
Article thumbnail
Location of Repository

ALTICORE: an initiative for coastal altimetry

By S. Vignudelli, P. Cipollini, H.M. Snaith, F. Venuti, F. Lyard, L. Roblou, A. Kostianoy, S. Lebedev and R. Mamedov

Abstract

ALTICORE (value-added ALTImetry for COastal REgions) is an international initiative whose main objective is to encourage the operational use of altimetry over coastal areas, by improving the quality and availability of coastal altimetry data. The ALTICORE proposal has recently been submitted for funding to the INTAS scheme (www.intas.be) by a consortium of partners from Italy, France, UK, Russia and Azerbaijan. ALTICORE is also meant as a contribution to the ongoing International Altimeter Service effort. In this work we will describe the anticipated project stages, namely: 1) improvement of the most widely distributed, 1 Hz, data by analyzing the corrective terms and providing the best solutions, including those derived from appropriate local modelling; 2) development of a set of algorithms to automate quality control and gap-filling functions for the coastal regions; 3) development of testing strategies to ensure a thorough validation of the data. The improved products will be delivered to ALTICORE users via Grid-compliant technology; this makes it easier to integrate the local data holdings, allows access from a range of services, e.g. directly into model assimilation or GIS systems and should therefore facilitate a widespread and complete assessment of the 1Hz data performance and limitations. We will also outline the design and implementation of the Grid-compliant system for efficient access to distributed archives of data; this consists of regional data centres, each having primary responsibility for regional archives, local corrections and quality control, and operating a set of web-services allowing access to the full functionality of data extraction. We will conclude by discussing a follow-on phase of the project; this will investigate further improvements on the processing strategy, including the use of higher frequency (10 or 20 Hz) data. Phenomena happen at smaller spatial scales near the coast, so this approach is necessary to match the required resolution. The whole project will hopefully promote the 15-year sea surface height from altimetry to the rank of operational record for the coastal areas

Topics: GC
OAI identifier: oai:eprints.soton.ac.uk:45729
Provided by: e-Prints Soton
Downloaded from www.intas.be)

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.