research
oaioai:dash.harvard.edu:1/12724028

Cell Division Cycle 6, a Mitotic Substrate of Polo-Like Kinase 1, Regulates Chromosomal Segregation Mediated by Cyclin-Dependent Kinase 1 and Separase

Abstract

Defining the links between cell division and DNA replication is essential for understanding normal cell cycle progression and tumorigenesis. In this report we explore the effect of phosphorylation of cell division cycle 6 (Cdc6), a DNA replication initiation factor, by polo-like kinase 1 (Plk1) on the regulation of chromosomal segregation. In mitosis, the phosphorylation of Cdc6 was highly increased, in correlation with the level of Plk1, and conversely, Cdc6 is hypophosphorylated in Plk1-depleted cells, although cyclin A- and cyclin B1-dependent kinases are active. Binding between Cdc6 and Plk1 occurs through the polo-box domain of Plk1, and Cdc6 is phosphorylated by Plk1 on T37. Immunohistochemistry studies reveal that Cdc6 and Plk1 colocalize to the central spindle in anaphase. Expression of T37V mutant of Cdc6 (Cdc6-TV) induces binucleated cells and incompletely separated nuclei. Wild-type Cdc6 but not Cdc6-TV binds cyclin-dependent kinase 1 (Cdk1). Expression of wild-type Plk1 but not kinase-defective mutant promotes the binding of Cdc6 to Cdk1. Cells expressing wild-type Cdc6 display lower Cdk1 activity and higher separase activity than cells expressing Cdc6-TV. These results suggest that Plk1-mediated phosphorylation of Cdc6 promotes the interaction of Cdc6 and Cdk1, leading to the attenuation of Cdk1 activity, release of separase, and subsequent anaphase progression.Molecular and Cellular Biolog

Similar works

Full text

thumbnail-image

Harvard University - DASH

Provided a free PDF
oaioai:dash.harvard.edu:1/12724028Last time updated on 2/6/2015View original full text link

This paper was published in Harvard University - DASH .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.