Location of Repository

Molecular dynamics simulations of a bacterial autotransporter: NalP from Neisseria meningitidis

By Syma Khalid and Mark S.P. Samsom

Abstract

NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane ?-barrel containing a central -helix. The role of this -helix, and of the conformational dynamics of the ?-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane ?-barrel is stable even in the absence of the -helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a 'plug'. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation

Topics: QR
Year: 2006
OAI identifier: oai:eprints.soton.ac.uk:48164
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1080/0968... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.