Skip to main content
Article thumbnail
Location of Repository

Uma proposta para a geração de amostras aleatórias nos problemas de simulação em modelos de planejamento A proposal for random sample generation in simulation problems of planning models

By Luiz Alexandre Peternelli, Gilson Fernandes da Silva and Helio Garcia Leite

Abstract

Um modelo de predição do preço da celulose foi ajustado usando-se o tempo e o preço defasado como co-variáveis. A partir das estimativas dos parâmetros obtidas, foram propostas 48 possíveis tendências futuras para o preço da celulose. Posteriormente, três métodos de simulação foram usados para predizer os valores futuros definidos pelas várias tendências: M1<FONT FACE=Symbol>Þ</FONT> Pcel.f = µ; M2 <FONT FACE=Symbol>Þ</FONT> Pcel.f = µ + épsilonf, e M3 µf + épsilonf, em que m é a parte sistemática do modelo, e e f corresponde ao componente estocástico. Para as simulações foram usados o método de Monte Carlo e a distribuição triangular. Para comparar os valores simulados pelos três métodos com os conhecidos valores futuros nas várias tendências, foi usada a diferença relativa média entre os valores. No caso da ausência de tendência, os métodos M1 e M2 foram satisfatórios, apesar de o método M2 incluir distúrbios ao redor da média. No caso de haver tendência real, o método M3 teve a melhor "performance", mesmo sendo influenciado pela acurácia na predição da tendência.<br>A cellulose price prediction model was adjusted using time and lagged price as covariates. From the model parameter estimates, 48 possible trends were proposed for future cellulose price. Following, three simulation methods were used to predict the future values defined by the various trends: M1<FONT FACE=Symbol>Þ</FONT> Pcel.f = µ; M2 <FONT FACE=Symbol>Þ</FONT> Pcel.f = µ + epsilonf, e M3 µf + epsilonf, where m is the systematic part and e f is the stochastic component. The Monte Carlo method and a triangular distribution were used for the simulation. To compare the values simulated by the methods and the future values of the various trends, the Average Relative Difference was used. In case of no trend, M1 and M2 were satisfactory, although M2 included disturbances around the mean. In the case of a real trend, M3 had the best performance, though it was influenced by the accuracy in the predicted trend

Topics: Simulação, análise de risco, planejamento florestal, Simulation, risk analysis, forest planning, LCC:Forestry, LCC:SD1-669.5, LCC:Agriculture, LCC:S, DOAJ:Forestry, DOAJ:Agriculture and Food Sciences
Publisher: Sociedade de Investigações Florestais
Year: 2006
DOI identifier: 10.1590/S0100-67622006000500008
OAI identifier: oai:doaj.org/article:162fe90b87374188a423a7c8185e8e0d
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://doaj.org/search?source=... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.