Article thumbnail
Location of Repository

Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase

By Lily Ng, Richard J Goodyear, Chad A Woods, Mark J Schneider, Edward Diamond, Guy P Richardson, Matthew W Kelley, Donald L St Germain, Valerie Anne Galton and Douglas Forrest

Abstract

The later stages of cochlear differentiation and the developmental onset of hearing require thyroid hormone. Although thyroid hormone receptors (TRs) are a prerequisite for this process, it is likely that other factors modify TR activity during cochlear development. The mouse cochlea expresses type 2 deiodinase (D2), an enzyme that converts thyroxine, the main form of thyroid hormone in the circulation, into 3,5,3'-triiodothyronine (T3) the major ligand for TRs. Here, we show that D2-deficient mice have circulating thyroid hormone levels that would normally be adequate to allow hearing to develop but they exhibit an auditory phenotype similar to that caused by systemic hypothyroidism or TR deletions. D2-deficient mice have defective auditory function, retarded differentiation of the cochlear inner sulcus and sensory epithelium, and deformity of the tectorial membrane. The similarity of this phenotype to that caused by TR deletions suggests that D2 controls the T3 signal that activates TRs in the cochlea. Thus, D2 is essential for hearing, and the results suggest that this hormone-activating enzyme confers on the cochlea the ability to stimulate its own T3 response at a critical developmental period

Publisher: National Academy of Sciences
Year: 2004
OAI identifier: oai:sro.sussex.ac.uk:16711
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1073/pnas... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.