ESO-Based Fuzzy Sliding-Mode Control for a 3-DOF Serial-Parallel Hybrid Humanoid Arm

Abstract

This paper presents a unique ESO-based fuzzy sliding-mode controller (FSMC-ESO) for a 3-DOF serial-parallel hybrid humanoid arm (HHA) for the trajectory tracking control problem. The dynamic model of the HHA is obtained by Lagrange method and is nonlinear in dynamics with inertia uncertainty and external disturbance. The FSMC-ESO is based on the combination of the sliding-mode control (SMC), extended state observer (ESO) theory, and fuzzy control (FC). The SMC is insensitive to both internal parameter uncertainties and external disturbances. The motivation for using ESO is to estimate the disturbance in real-time. The fuzzy parameter self-tuning strategy is proposed to adjust the switching gain on line according to the running state of the system. The stability of the system is guaranteed in the sense of the Lyapunov stability theorem. The effectiveness and robustness of the designed FSMC-ESO are illustrated by simulations

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 18/12/2014

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.