Article thumbnail

Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology



This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT) nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA) and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM) was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE) has six combination of operating variables which have been obtained in order to attain the greatest overall desirability

Topics: Polymer composites, Nanocomposites, Materials testing, Response Surface Methodology, Design of Experiment, Materials of engineering and construction. Mechanics of materials, TA401-492, Chemical technology, TP1-1185
Publisher: Budapest University of Technology
Year: 2008
DOI identifier: 10.3144/expresspolymlett.2008.2
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.