Location of Repository

Linking surface and sub-surface variability in Drake Passage

By Graham D. Quartly, Jesus Gomez-Enri and Gabriel Navarro

Abstract

The Antarctic Circumpolar Current (ACC) is the largest current in the world, with a mean transport of 134 Sv, and it provides a significant barrier to the oceanic transfer of heat from mid-latitudes to polar regions. Infrequent full-depth hydrographic sections have shown large variability in the transport of the ACC and the position of its constituent fronts. The many sources of satellite remote-sensing data, with much more frequent sampling, offer another vista on such variability. The question we address here is how the spatial patterns and modes of variability recorded from satellite data relate to the observations from ships. In this paper, we confine our studies to height and temperature data from sensors that are unaffected by clouds, and thus provide near-complete records along the same. The seasonal variations in temperature are deeper south of 60°S, whereas the interannual variations, associated with meandering fronts, occur further north and are deeper. The variability signal from altimetry lies further north again

Topics: GC
Publisher: Institute of Electrical and Electronics Engineers
Year: 2008
OAI identifier: oai:eprints.soton.ac.uk:64872
Provided by: e-Prints Soton

Suggested articles

Preview

Citations

  1. Characterizing and following eddies in Drake Passage",
  2. (2003). Identification of marine eddies from altimetric maps,"
  3. (2006). Location of the Antarctic Polar Front from AMSR-E satellite sea surface temperature measurements",
  4. (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current," Deep-Sea Res.
  5. (2002). Physical controls on biogeochemical zonation in the Southern Ocean,", Deep Sea Res.
  6. (2003). Transport and variability of the Antarctic Circumpolar Current in Drake Passage,"

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.