Skip to main content
Article thumbnail
Location of Repository

Fatigue crack growth mechanisms in superalloys: an overview

By P.A.S. Reed

Abstract

Fatigue studies on disc and blade nickel based superalloys by the author and co-workers are reviewed. Crack initiation in single crystal turbine blade alloys is dominated by interdendritic porosity with oxidation processes affecting initiation position. Lifetime trends can be modelled using a multipart Paris type lifing approach. Orientation, loading state, temperature and environment determine stage I/II crack growth mechanisms and the resulting crack path and should be considered in lifing. Mechanistic insights on how complex stress states, subsurface failures and different temperatures/environments affect fatigue processes can thus improve turbine blade lifing, and direct alloy development programmes. In polycrystalline disc alloys cracks at high temperature may initiate at oxidised subsurface carbides or porosity. Grain size controls cycle and time dependent crack growth: the benefits of increased grain size in resisting grain boundary attack mechanisms predominate over those of gamma' distribution variation. Optimising grain boundary character and gamma' distribution should yield the best alloy design strategy for high temperature fatigue performance in turbine discs

Topics: TJ, TN, TL
Year: 2009
OAI identifier: oai:eprints.soton.ac.uk:65062
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1179/1743... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.