A Robust Intelligent Framework for Multiple Response Statistical Optimization Problems Based on Artificial Neural Network and Taguchi Method


An important problem encountered in product or process design is the setting of process variables to meet a required specification of quality characteristics (response variables), called a multiple response optimization (MRO) problem. Common optimization approaches often begin with estimating the relationship between the response variable with the process variables. Among these methods, response surface methodology (RSM), due to simplicity, has attracted most attention in recent years. However, in many manufacturing cases, on one hand, the relationship between the response variables with respect to the process variables is far too complex to be efficiently estimated; on the other hand, solving such an optimization problem with accurate techniques is associated with problem. Alternative approach presented in this paper is to use artificial neural network to estimate response functions and meet heuristic algorithms in process optimization. In addition, the proposed approach uses the Taguchi robust parameter design to overcome the common limitation of the existing multiple response approaches, which typically ignore the dispersion effect of the responses. The paper presents a case study to illustrate the effectiveness of the proposed intelligent framework for tackling multiple response optimization problems

Similar works

Full text


Directory of Open Access Journals

Provided original full text link
oai:doaj.org/article:35e8df37711c447ca195a589e488567aLast time updated on 12/18/2014

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.