Location of Repository

Centralisers of finite subgroups in soluble groups of type FPn

By Dessislava H. Kochloukova, Conchita Martínez-Pérez and Brita E.A. Nucinkis


We show that for soluble groups of type FPn , centralisers <br/>of finite subgroups need not be of type FPn<br/

Topics: QA
Year: 2009
OAI identifier: oai:eprints.soton.ac.uk:65887
Provided by: e-Prints Soton

Suggested articles



  1. (1996). A course in the theory of groups, Graduate Texts in Mathematics, 80,
  2. (1981). A geometric invariant for modules over an abelian group,
  3. (1982). A geometric invariant for nilpotent-by-abelian-by-finite groups,
  4. (1986). Bieri-Strebel valuations (of finite rank),
  5. (2008). Cohomological finiteness conditions for elementary amenable groups,
  6. (1994). Cohomology of groups,
  7. (2008). Cohomoloical finiteness conditions in Bredon cohomology,
  8. (1993). Finitely presented groups and the finite generation of exterior powers, Combinatorial and geometric group theory
  9. Finiteness conditions and generalized soluble groups. Part 2, Ergebnisse der Mathematik und ihrer Grenzgebiete,
  10. (2001). Geometric invariants and modules of type FP over constructible nilpotent-by-abelian groups,
  11. (1982). Metabelian groups of type (FP) are virtually of type (FP),
  12. (1994). On the geometric invariants of soluble groups of finite Pr¨ ufer rank,
  13. (1991). Some finitely presented nilpotent-by-abelian groups,
  14. (2003). Some groups of type
  15. (1985). Tensor powers of modules over finitely generated abelian groups,
  16. (1996). The FPm-conjecture for a class of metabelian groups,
  17. (1984). The geometry of the set of characters induced by valuations,
  18. (2000). The type of the classifying space for a family of subgroups,
  19. (1980). Valuations and finitely presented metabelian groups,
  20. (2007). Virtually soluble groups of type FP

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.