Article thumbnail


By J. Telis-Romero, R.A.F. Cabral, G.Z. Kronka and V.R.N. Telis


The rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4ºBrix and pressures between 5.8 × 10³ and 9.4 × 10(4) Pa (abs.). Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2ºBrix, the rise in boiling point was nearly independent of pressure, varying only with extract concentration. Considerable deviations of this behavior began to occur at concentrations higher than 16.2ºBrix. Experimental data could best be predicted by adjusting an empirical model which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration

Topics: Evaporation, concentration, vapor pressure, Chemical engineering, TP155-156
Publisher: Brazilian Society of Chemical Engineering
Year: 2002
DOI identifier: 10.1590/S0104-66322002000100009
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.