Article thumbnail
Location of Repository

Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within 2 \times 10^{-13} atomic-unit accuracy by stimulated-emission detection

By J. Guéna, M. Lintz and M. -A. Bouchiat


We exploit the process of asymmetry amplification by stimulated emission which provides an original method for parity violation (PV) measurements in a highly forbidden atomic transition. The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the 7S-6P_{3/2} transition, probed after it is excited by an intense, linearly polarized, collinear laser, tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric field. We report here a 3.5 fold increase, of the one-second-measurement sensitivity, and subsequent reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Gu\'ena et al., Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the set-up include an increased repetition rate, better extinction of the probe beam at the end of the probe pulse and, for the first time to our knowledge, the following: a polarization-tilt magnifier, quasi-suppression of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We also present real-time tests of systematic effects, consistency checks on the data, as well as a 1% accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements performed in seven different vapor cells agree within the statistical error. Our present result is compatible with the more precise Boulder result within our present relative statistical accuracy of 2.6%, corresponding to a 2 \times 10^{-13} atomic-unit uncertainty in E_1^{pv}. Theoretical motivations for further measurements are emphasized and we give a brief overview of a recent proposal that would allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry amplification is much greater.Comment: Article 21 pages, 6 figures, 3 tables Typos, addition of few comments and little more data (1 week) leading to a slight reduction of the error bar Accepted for publication in Phys.Rev.

Topics: Physics - Atomic Physics, High Energy Physics - Phenomenology
Publisher: 'American Physical Society (APS)'
Year: 2005
DOI identifier: 10.1103/PhysRevA.71.042108
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.