Skip to main content
Article thumbnail
Location of Repository

Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modelling

By L. Vázquez, A Alvarez-Gallegos, F.Z Sierra, C. Ponce de León and F.C Walsh

Abstract

A commercial computational fluid dynamics code (Fluent) has been used to analyze the performance of a unit cell laboratory; the filter-press reactor (FM01-LC) operating with characteristic linear flow velocities between 0.024ms?1 and 0.110ms?1. The electrolyte flow through the reactor channel was numerically simulated using a finite volume approach to the solution of the Navier–Stokes equations. The flow patterns in the reactor were obtained and the mean linear electrolyte velocity was evaluated and substituted into a general mass transport correlation to calculate the mass transport coefficients. In the region of 150 < Re < 550, mass transport coefficients were obtained with a relative error between 5% and 29% respect to the experimental km values. The differences between theoretical and experimental values are discusse

Topics: TP, QD
Year: 2009
OAI identifier: oai:eprints.soton.ac.uk:69888
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1016/j.el... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.