Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modelling

Abstract

A commercial computational fluid dynamics code (Fluent) has been used to analyze the performance of a unit cell laboratory; the filter-press reactor (FM01-LC) operating with characteristic linear flow velocities between 0.024ms?1 and 0.110ms?1. The electrolyte flow through the reactor channel was numerically simulated using a finite volume approach to the solution of the Navier–Stokes equations. The flow patterns in the reactor were obtained and the mean linear electrolyte velocity was evaluated and substituted into a general mass transport correlation to calculate the mass transport coefficients. In the region of 150 < Re < 550, mass transport coefficients were obtained with a relative error between 5% and 29% respect to the experimental km values. The differences between theoretical and experimental values are discusse

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.