Lipid Monolayers with Adsorbed Oppositely Charged Polyelectrolytes: Influence of Reduced Charge Densities

Abstract

Polyelectrolytes in dilute solutions (0.01 mmol/L) adsorb in a two-dimensional lamellar phase to oppositely charged lipid monolayers at the air/water interface. The interchain separation is monitored by Grazing Incidence X-ray Diffraction. On monolayer compression, the interchain separation decreases to a factor of two. To investigate the influence of the electrostatic interaction, either the line charge density of the polymer is reduced (a statistic copolymer with 90% and 50% charged monomers) or mixtures between charged and uncharged lipids are used (dipalmitoylphosphatidylcholine (DPPC)/ dioctadecyldimethylammonium bromide (DODAB)) On decrease of the surface charge density, the interchain separation increases, while on decrease of the linear charge density, the interchain separation decreases. The ratio between charged monomers and charged lipid molecules is fairly constant; it decreases up to 30% when the lipids are in the fluid phase. With decreasing surface charge or linear charge density, the correlation length of the lamellar order decreases

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

Provided original full text link
oaioai:doaj.org/article:a...Last time updated on 12/17/2014

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.