Location of Repository

Proposal for a standard problem for micromagnetic simulations including spin-transfer torque

By M. Najafi, B. kruger, S. Bohlens, M. Franchin, H. Fangohr, A. Vanhaverbeke, R. Allenspach, M. Bolte, U. Merkt, D. Pfannkuche, D.P.F. Moller and G. Meier


The spin-transfer torque between itinerant electrons and the magnetization in a ferromagnet is of fundamental interest for the applied physics community. To investigate the spin-transfer torque, powerful simulation tools are mandatory. We propose a micromagnetic standard problem includingthe spin-transfer torque that can be used for the validation and falsication of micromagnetic simulation tools. The work is based on the micromagnetic model extended by the spin-transfer torque in continuously varying magnetizations as proposed by Zhang and Li. The standard problem geometry is a permalloy cuboid of 100 nm edge length and 10 nm thickness, which contains a Landau pattern with a vortex in the center of the structure. A spin-polarized dc current density of 1012 A/m2 flows laterally through the cuboid and moves the vortex core to a new steady-state position. We show that the new vortex-core position is a sensitive measure for the correctness of micromagnetic simulatorsthat include the spin-transfer torque. The suitability of the proposed problem as a standard problem is tested by numerical results from four different finite-difference and finite-element-based simulation tools

Topics: QC
Year: 2009
OAI identifier: oai:eprints.soton.ac.uk:71981
Provided by: e-Prints Soton

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.