Substrate-Aware Connectivity Support for Scalable Overlay Service
- Publication date
- 2007
- Publisher
Abstract
Internet overlay services may exhibit poor performance when their designs ignore the topology and link properties of the underlying Internet substrate. Various service-specific techniques have been proposed to select good overlay links and thus enhance the performance. In this paper, we explore the model of providing a substrate-aware overlay structure management layer to assist the construction of large-scale wide-area Internet services. To this end, we propose Saxons, a distributed software layer that dynamically maintains an efficient mesh structure connecting overlay nodes. Saxons provides connectivity support with three performance goals: low overlay latency, low hop-count distance, and high overlay bandwidth. Services built on top of this layer can utilize the mesh structure while achieving high performance. Furthermore, Saxons targets large-scale self-organizing services which adds scalability and stability requirements into our design. This paper describes the design of Saxons and services that can take advantage of it. Our simulation-based evaluations demonstrate Saxons' effectiveness in terms of structure quality, stability, and overlay connectivity. To illustrate the usage of Saxons, this paper also presents the design of a Saxons-based high-bandwidth overlay route discovery service