In recent years, competitive domain-decomposed preconditioned iterative techniques have been developed for nonsymmetric elliptic problems. In these techniques, a large problem is divided into many smaller problems whose requirements for coordination can be controlled to allow effective solution on parallel machines. A central question is how to choose these small problems and how to arrange the order of their solution. Different specifications of decomposition and solution order lead to a plethora of algorithms possessing complementary advantages and disadvantages. In this report we compare several methods, including the additive Schwarz algorithm, the classical multiplicative Schwarz algorithm, an accelerated multiplicative Schwarz algorithm, the tile algorithm, the CGK algorithm, the CSPD algorithm, and also the popular global ILU-family of preconditioners, on some nonsymmetric or indefinite elliptic model problems discretized by finite difference methods. The preconditioned problems..
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.