Skip to main content
Article thumbnail
Location of Repository

Etiologic theories of idiopathic scoliosis: enantiomorph disorder concept of bilateral symmetry, physeally-created growth conflicts and possible prevention.

By R G Burwell, B J C Freeman, P H Dangerfield, R K Aujla, A A Cole, Alanah Kirby, R K Pratt, J K Webb and A Moulton


The detection of anomalous extra-spinal left-right skeletal length asymmetries in the upper limbs, periapical ribs, ilia and lower limbs of subjects with adolescent idiopathic scoliosis (AIS) raises questions about skeletal bilateral symmetry of vertebrates in health and disorder, its origin and control. The vertebrate body plan externally has mirror-image bilateral symmetries that are highly conserved culminating in the adult form. The normal human body can be viewed as containing paired skeletal structures in the axial and appendicular skeleton as 1) separate left and right paired forms (eg long limb bones, ribs, ilia), and 2) united in paired forms (eg vertebrae, sternum, skull, mandible). Each of these separate and united pairs are mirror-image forms--enantiomorphs. Left-right asymmetries of growth plates (physes) may cause (1) in long bones length asymmetries, (2) within one or more vertebral physes putative growth conflict with distortion as deformity, and (3) between ribs and vertebrae putative growth conflict that triggers thoracic AIS suggesting preventive surgery on spine and ribs. There is evidence of a possible role for environmental factors in AIS development. Genes and the environment (nature/nurture) may interact pre- and/or post-natally to explain both the deformity of AIS and its association with widespread anomalous skeletal length asymmetries. If substantiated there may ultimately be a place for the prevention of AIS in some subjects

Publisher: IOS Press
Year: 2006
OAI identifier:
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.