Location of Repository

The equation x^py^q=z^r and groups that act freely on \Lambda-trees

By Armando Martino, Noel Brady, Laura Ciobanu and Shane O Rourke


Let $G$ be a finitely generated group that acts freely on a $\Lambda$-tree, where $\Lambda$ is an ordered abelian group, and let $x, y, z$ be elements in $G$. We show that if $x^p y^q = z^r$ with integers $p$, $q$, $r \geq 4$, then $x$, $y$ and $z$ commute

Year: 2009
OAI identifier: oai:eprints.soton.ac.uk:155687
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1090/S000... (external link)
  • Suggested articles


    1. (1997). An algorithm for cellular maps of closed surfaces.
    2. (2006). Cubulating graphs of free groups with cyclic edge groups. In preparation, doi
    3. (2001). Diophantine geometry over groups. I. Makanin-Razborov diagrams. doi
    4. (2005). Free actions on Zn-trees: A survey. doi
    5. (1989). free groups. doi
    6. (1994). Generalizations of free groups: Some questions. doi
    7. (1991). Group actions on non-Archimedean trees. In Arboreal group theory (Berkeley, CA, 1988),v o l u m e1 9o fM a t h .S c i .R e s .I n s t .P u b l . doi
    8. (2001). Introduction to Λ-trees. World Scientific, doi
    9. (1998). Irreducible affine varieties over a free group I. Irreducibility of quadratic equations and Nullstellensatz. doi
    10. (2004). Limit groups and groups acting freely on Rn-trees. doi
    11. (1960). On a problem of Lyndon. doi
    12. (1962). On generalised free products. doi
    13. (1967). Residually free groups. doi
    14. (1962). Sch¨ utzenberger. The equation aM = bNcP in a free group.
    15. (1990). Small cancellation theory and automatic groups. doi
    16. (1995). Some examples of groups with no nontrivial action on a Λ-tree. doi
    17. (2004). Some free actions on non-Archimedean trees. doi
    18. (1959). Sur l’´ equation a2+n = b2+mc2+p dans un groupe libre.
    19. (1959). The equation a2b2 = c2 in free groups.
    20. (1959). The equation anbn = cn in a free group. doi

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.