Location of Repository

Lattice Boltzmann method for direct numerical simulation of turbulent flows

By S.S. Chikatamarla, C.E. Frouzakis, I.V. Karlin, A.G. Tomboulides and K.B. Boulouchos

Abstract

We present three-dimensional numerical simulations (DNS) of the Kida vortex flow, a prototypical turbulent flow, using a novel high-order lattice Boltzmann model. Extensive comparisons of various global and local statistical quantities obtained with an incompressible flow spectral element solver are reported. It is demonstrated that the lattice Boltzmann method is a promising alternative for DNS as it quantitatively captures<br/>all the computed statistics of fluid turbulence

Topics: T1
Year: 2010
OAI identifier: oai:eprints.soton.ac.uk:155915
Provided by: e-Prints Soton

Suggested articles

Preview

Citations

  1. (2003). A n s u m a l i ,S . ,K a r l i n doi
  2. (2005). A n s u m a l i ,S .&K a r l i n ,I .V doi
  3. (1992). B e n z i ,R . ,S u c c i ,S .&V e r g a s s o l a ,M doi
  4. (1998). Complete Galilean-invariant lattice BGK models for the Navier– Stokes equation. doi
  5. (1994). Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. doi
  6. (1991). Direct simulation of three-dimensional turbulence in the Taylor–Green vortex. doi
  7. (1998). Discretization of the velocity space in the solution of the Boltzmann equation. doi
  8. (1989). Efficient removal of boundarydivergence errors in time-splitting methods. doi
  9. (2006). Entropic and Galilean invariance of lattice Boltzmann theories. doi
  10. (2006). Entropic lattice Boltzmann models for hydrodynamic in three dimensions. doi
  11. (2007). Entropic lattice Boltzmann representations required to recover Navier–Stokes flows. doi
  12. (2006). From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. doi
  13. (2007). Hydrodynamics beyond Navier–Stokes: exact solution to the lattice Boltzmann hierarchy. doi
  14. (1999). K a r l i n ,I .V . ,F e r r a n t e ,A .&O t t i n g e r doi
  15. (1991). K a r n i a d a k i s ,G .E . ,I s r a e l i ,M .&O r s z a g doi
  16. (1987). K i d a ,S .&M u r a k a m i ,Y doi
  17. (2006). L u o ,L .S . ,L a l l e m a n d ,P .&d ’ H u m i e r e s ,D doi
  18. (2007). Lattice Boltzmann model for the simulation of multi-component mixtures. doi
  19. (2009). Lattices for the lattice Boltzmann method. doi
  20. (1995). M c N a m a r a ,G .R . ,G a r c i a doi
  21. (2006). On the cubic velocity deviations in lattice Boltzmann methods. doi
  22. P a t e r a ,A .T .1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. doi
  23. Q i a n ,Y .H .&O r s z a g ,S .A .1993 Lattice BGK models for the Navier–Stokes equation: nonlinear deviation in compressible regimes. doi
  24. (2006). S h a n ,X .W . ,Y u a n ,X .&C h e n ,H doi
  25. (1996). S w i f t ,M .R . ,O r l a n d i n i ,E . ,O s b o r n doi
  26. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. doi
  27. (1941). The local structure of turbulence in an incompressible fluid with very large Reynolds number. doi
  28. (1985). Three-dimensional periodic flows with high-symmetry. doi
  29. (1990). Two-dimensional turbulence with the lattice Boltzmann equation. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.