Location of Repository

Regular embeddings of complete bipartite maps: classification and enumeration

By Gareth Jones

Abstract

The regular embeddings of complete bipartite graphs Kn, n in orientable surfaces are classified and enumerated, and their automorphism groups and combinatorial properties are determined. The method depends on earlier classifications in the cases where n is a prime power, obtained in collaboration with Du, Kwak, Nedela and koviera, together with results of Itô, Hall, Huppert and Wielandt on factorisable groups and on finite solvable groups. <br/

OAI identifier: oai:eprints.soton.ac.uk:156467
Provided by: e-Prints Soton

Suggested articles

Preview

Citations

  1. (1933). A contribution to the theory of groups of prime power orders’,
  2. (1978). A course in group theory doi
  3. (1928). A note on soluble groups’, doi
  4. (1963). Asymmetric graphs’,
  5. (1971). Automorphisms of imbedded graphs’, doi
  6. (1996). Belyi functions, hypermaps and Galois groups’, doi
  7. (2010). Classification of nonorientable regular embeddings of complete bipartite graphs’, Preprint, doi
  8. (2008). Classification of reflexible regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs’, doi
  9. (2008). Complete bipartite graphs with a unique regular embedding’, doi
  10. Die Gruppen mit quadratfreier Ordnungszahl’, doi
  11. (1967). Endliche Gruppen I (Springer, doi
  12. (1997). Esquisse d’un Programme’, Geometric Galois Actions 1. Around Grothendieck’s Esquisse d’un Programme doi
  13. (2007). Galois action on families of generalised Fermat curves’, doi
  14. (2009). Generalised Fermat hypermaps and Galois orbits’, doi
  15. (1972). Generators and relations for discrete groups, 3rd edn (Springer, doi
  16. (1955). Itˆ o,‘ ¨ Uber das produkt von zwei abelschen doi
  17. (1997). Maps on surfaces and Galois groups’,
  18. Notes on the theory of groups of finite order’, doi
  19. (1979). Operators over regular maps’, doi
  20. (1948). os, ‘Some asymptotic formulas in number theory’,
  21. (1979). Permutation groups and combinatorial structures, doi
  22. (1996). Permutation groups, doi
  23. (2007). Regular embeddings of Kn,n where 980 n is a power of 2. I: Metacyclic case’, doi
  24. Regular embeddings of Kn,n where n is a power of 2. II: Non-metacyclic case’, doi
  25. (2007). Regular embeddings of Kn,n where n is an odd prime power’, doi
  26. (2005). Regular orientable embeddings of complete bipartite graphs’, doi
  27. (1985). Regular orientable imbeddings of complete graphs’, doi
  28. (2002). Skoviera and A. Zlatoˇ s, ‘Regular embeddings of complete bipartite graphs’, doi
  29. (1951). Uber das Produkt von paarweise vertauschbaren nilpotenten doi
  30. (1964). Universal graphs and universal functions’,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.