Location of Repository

Aircraft Anomaly Detection using Performance Models Trained on Fleet Data

By Dimitry Gorinevsky, Bryan Matthews and Rodney Martin

Abstract

Abstract—This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into a list of abnormaly performing aircraft, abnormal flight-to-flight trends, and individual flight anomalies by fitting a large scale multi-level regression model to the entire data set. The model takes into account fixed effects: flight-to-flight and vehicle-tovehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, a multi-terabyte airline data set with a half million flights was processed in a few hours. The anomalies found include wrong values of computed variables such as aircraft weight and angle of attack as well as failures, biases, and trends in flight sensors and actuators. These anomalies were missed by the FOQA data exceedance monitoring currently used by the airline. I

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.418.6192
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.stanford.edu/~gorin... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.