Skip to main content
Article thumbnail
Location of Repository

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence A Theoretic Framework of K-Means-Based Consensus Clustering

By Junjie Wu, Hongfu Liu, Hui Xiong and Jie Cao

Abstract

Consensus clustering emerges as a promising solution to find cluster structures from data. As an efficient approach for consensus clustering, the K-means based method has garnered attention in the literature, but the existing research is still preliminary and fragmented. In this paper, we provide a systematic study on the framework of K-meansbased Consensus Clustering (KCC). We first formulate the general definition of KCC, and then reveal a necessary and sufficient condition for utility functions that work for KCC, on both complete and incomplete basic partitionings. Experimental results on various real-world data sets demonstrate that KCC is highly efficient and is comparable to the state-of-the-art methods in terms of clustering quality. In addition, KCC shows high robustness to incomplete basic partitionings with substantial missing values.

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.417.3135
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://ijcai.org/papers13/Pape... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.