Skip to main content
Article thumbnail
Location of Repository

Theoretical and numerical approximation of the . . .

By Leopold Matamba Messi

Abstract

This dissertation studies the approximation of the continuous total variation based model for image denoising by piecewise polynomial functions on polygonal domains. Our main contributions are the explicit construction of a continuous piecewise linear approximation on rectangular domains, and the construction of a minimizing sequence of bivariate splines of arbitrary degree for a general polygonal domain. For rectangular domains, we propose an alternate discretization of the ROF model and construct the continuous piecewise linear function as the piecewise linear interpolation of the minimizer of the new discrete model. Whereas on general polygonal domains, we use the Galerkin method to define the spline approximation as the minimizer of the ROF functional over a spline space. We then show that when given a suitable family of triangulations, our approach generates a minimizing sequence for the total variation model. In each case, we use an extension argument to show that the approximation converges to the ROF minimizer in the strict topology of the space of bounded variation functions

Year: 2012
OAI identifier: oai:CiteSeerX.psu:10.1.1.416.5606
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.math.uga.edu/~mjlai... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.