Location of Repository

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Decision Generalisation from Game Logs in No Limit Texas Hold’em ∗

By Jonathan Rubin and Ian Watson

Abstract

Given a set of data, recorded by observing the decisions of an expert player, we present a case-based framework that allows the successful generalisation of those decisions in the game of no limit Texas Hold’em. We address the problems of determining a suitable action abstraction and the resulting state translation that is required to map real-value bet amounts into a discrete set of abstract actions. We also detail the similarity metrics used in order to identify similar scenarios, without which no generalisation of playing decisions would be possible. We show that we were able to successfully generalise no limit betting decisions from recorded data via our agent, SartreNL, which achieved a 5th place finish out of 11 opponents at the 2012 Annual Computer Poker Competition

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.415.9862
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://ijcai.org/papers13/Pape... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.