Skip to main content
Article thumbnail
Location of Repository

Quantum Communication Complexity (A Survey

By Gilles Brassard


Can quantum communication be more efficient than its classical counterpart? Holevo’s theorem rules out the possibility of communicating more than n bits of classical information by the transmission of n quantum bits—unless the two parties are entangled, in which case twice as many classical bits can be communicated but no more. In apparent contradiction, there are distributed computational tasks for which quantum communication cannot be simulated efficiently by classical means. In extreme cases, the effect of transmitting quantum bits cannot be achieved classically short of transmitting an exponentially larger number of bits. In a similar vein, can entanglement be used to save on classical communication? It is well known that entanglement on its own is useless for the transmission of information. Yet, there are distributed tasks that cannot be accomplished at all in a classical world when communication is not allowed, but that become possible if the non-communicating parties share prior entanglement. This leads to th

Year: 2001
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.