Location of Repository

Composable memory transactions

By Tim Harris, Mark Plesko, Avraham Shinnar and David Tarditi


Atomic blocks allow programmers to delimit sections of code as ‘atomic’, leaving the language’s implementation to enforce atomicity. Existing work has shown how to implement atomic blocks over word-based transactional memory that provides scalable multiprocessor performance without requiring changes to the basic structure of objects in the heap. However, these implementations perform poorly because they interpose on all accesses to shared memory in the atomic block, redirecting updates to a thread-private log which must be searched by reads in the block and later reconciled with the heap when leaving the block. This paper takes a four-pronged approach to improving performance: (1) we introduce a new ‘direct access ’ implementation that avoids searching thread-private logs, (2) we develop compiler optimizations to reduce the amount of logging (e.g. when a thread accesses the same data repeatedly in an atomic block), (3) we use runtime filtering to detect duplicate log entries that are missed statically, and (4) we present a series of GC-time techniques to compact the logs generated by long-running atomic blocks. Our implementation supports short-running scalable concurrent benchmarks with less than 50 % overhead over a non-thread-safe baseline. We support long atomic blocks containing millions of shared memory accesses with a 2.5-4.5x slowdown. Categories and Subject Descriptors D.3.3 [Programming Languages]

Topics: General Terms Algorithms, Languages, Performance Keywords Atomicity, Critical Regions, Transactional Memory
Year: 2005
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.eecs.harvard.edu/~s... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.