Skip to main content
Article thumbnail
Location of Repository

© 2009 Molecular Vision Retinal regeneration in the Xenopus laevis tadpole: a new model system

By M. Natalia Vergara and Katia Del Rio-tsonis


Purpose: Retinal regeneration research holds potential for providing new avenues for the treatment of degenerative diseases of the retina. Various animal models have been used to study retinal regeneration over the years, providing insights into different aspects of this process. However the mechanisms that drive this important phenomenon remain to be fully elucidated. In the present study, we introduce and characterize a new model system for retinal regeneration research that uses the tadpole of the African clawed frog, Xenopus laevis. Methods: The neural retina was surgically removed from Xenopus laevis tadpoles at stages 51–54, and a heparin-coated bead soaked in fibroblast growth factor 2 (FGF-2) was introduced in the eyes to induce regeneration. Histological and immunohistochemical analyses as well as DiI tracing were performed to characterize the regenerate. A similar surgical approach but with concomitant removal of the anterior portion of the eye was used to assess the capacity of the retinal pigmented epithelium (RPE) to regenerate a retina. Immunohistochemistry for FGF receptors 1 and 2 and phosphorylated extracellular signal-regulated protein kinase (pERK) was performed to start elucidating the intracellular mechanisms involved in this process. The role of the mitogen activated protein kinase (MAPK) pathway was confirmed through a pharmacological approach using the MAPK kinase (MEK) inhibitor U0126. Results: We observed that Xenopus laevis tadpoles were able to regenerate a neural retina upon induction with FGF-2 in vivo. The regenerated tissue has the characteristics of a differentiated retina, as assessed by the presence and distributio

Year: 2014
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.