Skip to main content
Article thumbnail
Location of Repository

ACCURATE REPRESENTATION OF EXCITATION AND LOADING FOR ARBITRARILY SHAPED ANTENNAS COMPOSED OF CONDUCTING SURFACES IN THE METHOD OF MOMENTS

By K. F. A. Hussein

Abstract

Abstract—In this work, a new method is introduced to model the excitation and loading for antennas composed of arbitrarily shaped conducting surfaces treated by the elctric field integral equation method described by Raw-Wilton-Glisson (RWG). Instead of using a single non-boundary edge to represent a zero-width exciting gap according to the conventional method, the proposed method uses either single or multiple pairs of facing boundary edges to form a real gap of arbitrary shape and width. The new method has many advantages over the conventional (zero-width) source/load representation considering the flexibility in shaping the gap to fit the antenna surface and the accuracy of the obtained results especially for the antenna input impedance and the input current distribution. The new method is described mathematically in detail. Modified basis functions are described for the gap source/load. Numerical results are obtained to investigate the dependence of the antenna input impedance and the current distribution along the gap length on the gap width, the geometrical shape of the gap and the surface segmentation resolution along the gap length. 1

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.413.8237
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.jpier.org/PIERB/pie... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.