Skip to main content
Article thumbnail
Location of Repository

D private communication

By Giovanni Pini, Matteo Gagliolo, Arne Brutschy, Marco Dorigo, Mauro Birattari, G. Pini, A. Brutschy, M. Dorigo, M. Birattari, A. Brutschy, M. Dorigo, M. Birattari and M. Gagliolo


Abstract Task partitioning consists in dividing a task into sub-tasks that can be tackled separately. Partitioning a task might have both positive and negative effects: On the one hand, partitioning might reduce physical interference between workers, enhance exploitation of specialization, and increase efficiency. On the other hand, partitioning may introduce overheads due to coordination requirements. As a result, whether partitioning is advantageous or not has to be evaluated on a case-by-case basis. In this paper we consider the case in which a swarm of robots must decide whether to complete a given task as an unpartitioned task, or utilize task partitioning and tackle it as a sequence of two sub-tasks. We show that the problem of selecting between the two options can be formulated as a multi-armed bandit problem and tackled with algorithms that have been proposed in the reinforcement learning literature. Additionally, we study the implications of using explicit communication between the robots to tackle the studied task partitioning problem. We consider a foraging scenario as a testbed and we perform simulation-based experiments to evaluate the behavior of the system. The results confirm that existing multi-armed bandit algorithms can be employed in the context of task partitioning. The use of communication can result in better performance, but in may also hinder the flexibility of the system

Year: 2014
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.