Skip to main content
Article thumbnail
Location of Repository

Finite-length analysis of the TEP decoder for LDPC ensembles over the BEC

By Pablo M. Olmos, O Pérez-cruz, Iii Madrid, Luis Salamanca and Juan José Murillo-fuentes

Abstract

Abstract—In this work, we analyze the finite-length performance of low-density parity check (LDPC) ensembles decoded over the binary erasure channel (BEC) using the tree-expectation propagation (TEP) algorithm. In a previous paper, we showed that the TEP improves the BP performance for decoding regular and irregular short LDPC codes, but the perspective was mainly empirical. In this work, given the degree-distribution of an LDPC ensemble, we explain and predict the range of code lengths for which the TEP improves the BP solution. In addition, for LDPC ensembles that present a single critical point, we propose a scaling law to accurately predict the performance in the waterfall region. These results are of critical importance to design practical LDPC codes for the TEP decoder. I

Year: 2014
OAI identifier: oai:CiteSeerX.psu:10.1.1.413.1202
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://personal.us.es/murillo/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.