Skip to main content
Article thumbnail
Location of Repository

Central Limit Theorem for dimension of Gibbs measures for skew expanding maps

By Renaud Leplaideur and Benoît Saussol


We consider a class of non-conformal expanding maps on the d-dimensional torus. For an equilibrium measure of an Hölder potential, we prove an analogue of the Central Limit Theorem for the fluctuations of the logarithm of the measure of balls as the radius goes to zero. An unexpected consequence is that when the measure is not absolutely continuous, then half of the balls of radius ε have a measure smaller than ε δ and half of them have a measure larger than ε δ, where δ is the Hausdorff dimension of the measure. We first show that the problem is equivalent to the study of the fluctuations of some Birkhoff sums. Then we use general results from probability theory as the weak invariance principle and random change of time to get our main theorem. Our method also applies to conformal repellers and Axiom A surface diffeomorphisms and possibly to a class of one-dimensional non uniformly expanding maps

Topics: Contents
Year: 2009
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • http://hal.archives-ouvertes.f... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.