Skip to main content
Article thumbnail
Location of Repository

Incremental learning with rulebased neural networks

By C. M. Higgins and R. M. Goodman


A classi er for discrete-valued variable classi cation problems is presented. The system utilizes an information-theoretic algorithm for constructing informative rules from example data. These rules are then used to construct a neural network to perform parallel inference and posterior probability estimation. The network can be `grown ' incrementally, so that new data can be incorporated without repeating the training on previous data. It is shown that this technique performs comparably with other techniques such as back-propagation while having unique advantages in incremental learning capability, training e ciency, knowledge representation, and hardware implementation suitability.

Year: 1991
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.