Skip to main content
Article thumbnail
Location of Repository

IS EVERY TORIC VARIETY AN M-VARIETY?

By Frédéric Bihan, Matthias Franz, Clint Mccrory and Joost Van Hamel

Abstract

A complex algebraic variety X defined over the real numbers is called an M-variety if the sum of its Betti numbers (for homology with closed supports and coefficients in Z/2) coincides with the corresponding sum for the real part of X. It has been known for a long time that any nonsingular complete toric variety is an M-variety. In this paper we consider whether this remains true for toric varieties that are singular or not complete, and we give a positive answer when the dimension of X is less than or equal to 3 or when X is complete with isolated singularities

Year: 2006
OAI identifier: oai:CiteSeerX.psu:10.1.1.411.893
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://hal.archives-ouvertes.f... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.