Skip to main content
Article thumbnail
Location of Repository

Interactively Training Pixel Classifiers

By Justus H. Piater, Edward M. Riseman and Paul E. Utgoff


For typical classification tasks, all training data are prepared in advance and are supplied to the classifier all at once. This is unnecessarily expensive and incurs overfitting problems, since the individual contributions of the training instances to the classifier are not known. We address this by proposing an interactive incremental framework for image classifier construction, where small numbers of training examples are supplied at each user interaction. After incorporating new training instances, the classifier immediately reclassifies the image to provide the user with instant feedback. This allows the user to choose additional informative training pixels from among the currently misclassified ones. Using a realistic terrain classification task, we demonstrate the potential of our method to generate small and accurate decision tree classifiers from surprisingly few training examples while avoiding overspecialization. We also briefly discuss the novel concept of hierarchical clas..

Publisher: Press
Year: 1998
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.