Location of Repository

Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the Geomagnetic Polarity and Astronomical Time Scale

By Bridget S. Wade, Paul N. Pearson, William A. Berggren and Heiko Pälike


Planktonic foraminifera are widely utilized for the biostratigraphy of Cretaceous and Cenozoic marine sediments and are a fundamental component of Cenozoic chronostratigraphy. The recent enhancements in deep sea drilling recovery, multiple coring and high resolution sampling both offshore and onshore, has improved the planktonic foraminiferal calibrations to magnetostratigraphy and/or modified species ranges. This accumulated new information has allowed many of the planktonic foraminiferal bioevents of the Cenozoic to be revised and a reassessment of the planktonic foraminiferal calibrations. We incorporate these developments and amendments into the existing biostratigraphic zonal scheme.<br/>In this paper we present an amended low-latitude (tropical and subtropical) Cenozoic planktonic foraminiferal zonation. We compile 187 revised calibrations of planktonic foraminiferal bioevents from multiple sources for the Cenozoic and have incorporated these recalibrations into a revised Cenozoic planktonic foraminiferal biochronology. We review and synthesize these calibrations to both the geomagnetic polarity time scale (GPTS) of the Cenozoic and astronomical time scale (ATS) of the Neogene and late Paleogene. On the whole, these recalibrations are consistent with previous work; however, in some cases, they have led to major adjustments to the duration of biochrons. Recalibrations of the early middle Eocene first appearance datums of Globigerinatheka kugleri, Hantkenina singanoae, Guembelitrioides nuttalli and Turborotalia frontosa have resulted in large changes in the durations of Biochrons E7, E8 and E9. We have introduced (upper Oligocene) Zone O7 utilizing the biostratigraphic utility of 'Paragloborotalia' pseudokugleri. For the Neogene Period, major revisions are applied to the fohsellid lineage of the middle Miocene and we have modified the criteria for recognition of Zones M7, M8 and M9, with additional adjustments regarding the Globigerinatella lineage to Zones M2 and M3. The revised and recalibrated datums provide a major advance in biochronologic resolution and a template for future progress to the Cenozoic time scale

Topics: QE
Year: 2011
OAI identifier: oai:eprints.soton.ac.uk:163949
Provided by: e-Prints Soton

Suggested articles



  1. (2004). A Geologic Time Scale doi
  2. (2004). A long term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, doi
  3. (1981). A review of Neogene planktonic foraminiferal biostratigraphy: applications in the equatorial and South Paci c. In: Warme, doi
  4. (1995). A revised Cenozoic geochronology and chronostratigraphy. doi
  5. (2005). A revised tropical and subtropical Paleogene planktonic foraminiferal zonation. doi
  6. (1959). Age, correlation, and biostratigraphy of the upper Tocuyo (San Lorenzo) and Pown formations,
  7. (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. doi
  8. (1990). Antarctic Paleogene planktonic foraminifer biostratigraphy: ODP Leg 113, Sites 689 and 690. doi
  9. (1999). Astronomical calibration of Oligocene–Miocene time. doi
  10. (1995). Benthic foraminiferal stable isotope stratigraphy of Site 846: 0–1.8 doi
  11. (1995). Biostratigraphic summary for Leg 138. doi
  12. (2005). Biostratigraphy: Microfossils and Geological Time. doi
  13. (1969). Cenozoic chronostratigraphy, planktonic foraminiferal zonation and the radiometric time scale. doi
  14. (1971). Cenozoic foraminifera. In:
  15. (1975). Cenozoic planktonic foraminifera from Antarctic Deep Sea sediments, doi
  16. (1975). Cenozoic planktonic foraminiferal zonation and characteristics of index forms: University of Kansas paleontological contributions. doi
  17. (1964). Cenozoic planktonic foraminiferal zonation. doi
  18. (2009). Characterization and astronomically calibrated age of the rst occurrence of Turborotalia frontosa in the Gorrondatxe section, a prospective Lutetian GSSP: implications for the Eocene time scale. doi
  19. (1979). Disappearance of pink-pigmented Globigerinoides ruber at 120, 000 yr BP in the Indian and Paci c oceans. doi
  20. (1992). Distribution of microperforate tenuitellid planktonic foraminifera doi
  21. Dowsett,H.J.,1988.DiachronyoflateNeogenemicrofossilsintheSouthwestPaci cOcean: application of the graphic correlation method.
  22. (2002). Early Paleocene planktic foraminiferal and carbon isotope stratigraphy, Hole 762 C, Exmouth Plateau, northwest Australian margin. doi
  23. (2010). Ecological and evolutionary response of Tethyan planktonic foraminifera to the middle Eocene climatic optimum (MECO) from the Alano section doi
  24. (2008). Eocene–Oligocene global climate and sea-level changes: doi
  25. (1998). Evolutionary concepts in biostratigraphy. In:
  26. (2010). Formal rati cation of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. doi
  27. (1951). Globigerinita naparimaensis, n. gen., n. sp., from the Miocene of Trinidad.
  28. (1972). Growth changes in the Globorotalia foshi lineage.
  29. (1993). High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (western Equatorial Paci c). doi
  30. Initial Reports of the Deep Sea Drilling Project. Government Printing Of ce, doi
  31. Integrated magnetobiochronology of the Early/Middle Eocene transition at Agost (Spain): implications for de ning the Ypresian/Lutetian boundary stratotype. doi
  32. (2000). Integrated Paleocene calcareous plankton magnetobiochronology and stable isotope stratigraphy: doi
  33. (2000). Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibliscemi doi
  34. (2008). Integrated stratigraphy of the Oligocene pelagic sequence in the Umbria-Marche basin (northeastern Apennines, Italy): a potential Global Stratotype Section and Point (GSSP) for the Rupelian/ Chattian boundary. doi
  35. (1976). International Stratigraphic Guide: A Guide to Stratigraphic Classi cation, Terminology and Procedure. doi
  36. (2009). Investigation of pre-extinction dwar ng in Cenozoic planktonic foraminifera. In: doi
  37. (1953). Iskopaemye foraminifery SSSR (Globigerinidy, Khantkenininidy i Globorotaliidy): Trudy Vsesoyznogo Nauchno-Issledovatel'skogo Geologo-razvedochnogo Instituta
  38. (1975). Late Cenozoic planktonic foraminiferal biostratigraphy and paleoclimatology of Hatton-Rockall Basin, doi
  39. (1969). Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. In: Brönnimann,
  40. (1981). Late Miocene–early Pliocene planktonic foraminiferal biostratigraphy and paleoceanography of low-latitude marine sequences. doi
  41. (1986). Late Miocene–early Pliocene stratigraphy and paleoceanography of the South Atlantic and southwest Paci c Oceans: a synthesis. doi
  42. (1994). Late Neogene biostratigraphic and magnetostratigraphic synthesis. doi
  43. (1995). Late Neogene chronology: new perspectives in highresolution stratigraphy. doi
  44. (1977). Late Neogene Planktonic Foraminiferal Biostratigraphy doi
  45. (1992). Late Neogene planktonic foraminiferal events of the southwest Paci c and Indian Ocean: a comparison.
  46. (1997). Late Paleocene to middle Miocene planktonic foraminifer biostratigraphy of the Ceara Rise. doi
  47. London Ser.
  48. (2002). Middle Miocene high resolution calcareous plankton biostratigraphy at Site 926 (Leg 154, equatorial Atlantic Ocean): paleoecological and paleobiogeographical implications. doi
  49. (1991). Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. doi
  50. (2009). Neogene and Quaternary coexisting in the geological time scale: the inclusive compromise. doi
  51. (1984). Neogene datum planes: foraminiferal successions in Australia with reference sections from the Ninetyeast Ridge and the Ontong-Java Plateau.In:Ikebe,N.,Tsuchi,R.(Eds.),Paci cNeogeneDatumPlanes,Contributionsto Biostratigraphy and Chronology.
  52. (1983). Neogene Planktonic Foraminifera, A Phylogenetic Atlas. doi
  53. (1992). Neogene planktonic foraminiferal biochronology of the DSDP sites along the Ninetyeast Ridge, northern Indian Ocean. In: Ishizaki,
  54. (1981). Neogene planktonic foraminiferal biostratigraphy and evolution: equatorial to subantarctic South Paci c. doi
  55. (1993). Neogene planktonic foraminiferal biostratigraphy of eastern Jamaica. doi
  56. (1993). Neogene planktonic foraminiferal biostratigraphyofthenortheasternGulfofMexico.Micropaleontology39,299–326. doi
  57. (1982). Neogene planktonic foraminifers from Deep Sea Drilling Project Sites 502 and 503. Initial Reports of the Deep Sea Drilling Project. Government Printing Of ce, doi
  58. (2010). New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. doi
  59. (1971). New Zealand Cenozoic planktonic foraminifera. doi
  60. (2004). Oligocene climate dynamics. doi
  61. (1993). Oligocene planktonic foraminifer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (Little Bahama Bank), and comparison with the southern high latitudes. doi
  62. (1985). Oligocene to Holocene low latitude planktic foraminifera.
  63. (1985). Oligocene–Miocene biostratigraphy, magnetostratigraphy, and isotope stratigraphy of the western North Atlantic. doi
  64. (2004). Oligocene–Miocene planktonic foraminifer biostratigraphy, Site 1148, northern South China Sea. doi
  65. (1972). Origin and development of Globorotalia (Turborotalia) pachyderma (Ehrenberg). doi
  66. (2008). Palaeoenvironmental turnover across the Ypresian–Lutetian transition at the Agost section, southeastern Spain: in search of a marker event to de ne the Stratotype for the base of the Lutetian Stage. doi
  67. (2004). Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: doi
  68. (1982). Paleogene magnetic stratigraphy in Umbrian pelagic carbonate rocks: the Contessa sections, doi
  69. (1990). Paleogene planktonic foraminifer biostratigraphy and paleoenvironmental remarks on Paleogene sediments from Indian Ocean Site, Leg 115. doi
  70. (1988). Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology. doi
  71. (1995). Planktonic foraminifer biostratigraphy and the development of pelagic caps on guyots in the Marshall Islands Group. In: doi
  72. (1997). Planktonic foraminifer biostratigraphy at doi
  73. (1957). Planktonic foraminifera from the Eocene Navet Formation and San Fernando Formations in Trinidad,
  74. (2004). Planktonic foraminiferal biostratigraphy and mechanisms in the extinctionofMorozovellainthelate MiddleEocene.Mar.Micropaleontol.
  75. (1994). Planktonic foraminiferal biostratigraphy of the Oligocene and lower Miocene in the oceanic record. An overview. doi
  76. (2008). Planktonic foraminiferal turnover, diversity uctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. doi
  77. (1966). Planktonic foraminiferal zones and new taxa from the Danian to Lower Miocene of New Zealand. doi
  78. (1967). Planktonic foraminiferal zones and new taxa from the lower Miocene to the Pleistocene of New Zealand. doi
  79. (1973). Pliocene biostratigraphy and chronostratigraphy. doi
  80. (1965). Progress in the planktonic foraminiferal biostratigraphy of the Neogene. doi
  81. (1983). Quaternary planktonic foraminifers of the southwestern Atlantic (Rio Grande Rise) Deep Sea Drilling Project Leg 72. doi
  82. (2007). Reassessment of the Early–Middle Eocene biomagnetochronology based on evidence from the Gorrondatxe section (Basque Country, western Pyrenees). doi
  83. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. doi
  84. (1997). Sediment uxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. doi
  85. (2002). Site 1218. In: doi
  86. (2004). Site 1264. In: Zachos,
  87. (2010). Site U1337. In: Pälike, doi
  88. (1949). Some Cuban species of Globorotalia. Contributions from the Cushman Foundation for Foraminiferal
  89. (2006). Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene Kilwa Group, doi
  90. (2009). Taxonomy and stable isotope paleoecology of wellpreserved planktonic foraminifera from the uppermost Oligocene of Trinidad. doi
  91. (2000). The base of the Zanclean Stage and of the Pliocene Series.
  92. (2007). The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the equatorial Paci c Ocean (ODP Site 1218). doi
  93. (1979). The Cainozoic Foraminiferida, v.
  94. (2009). the Expedition 320/321 Scientists,
  95. (1945). The foraminifera of the Cipero Marl Formation of doi
  96. (1957). The genera Globigerina and Globorotalia in the Paleocene–Lower Eocene Lizard Springs Formation of Trinidad,
  97. (1997). The global stratotype section and point the GSSP for the base of the Neogene (the Paleogene/Neogene boundary). doi
  98. (2006). The heartbeat of the Oligocene climate system. doi
  99. (1962). The Mid-Tertiary (Upper Eocene to Aquitanian) Globigerinaceae. In: Eames,
  100. (2010). The missing link in the evolutionary origin of the foraminiferal genus Hantkenina and the problem of the lower–middle Eocene boundary. doi
  101. (2011). The morphology, taxonomy and biostratigraphy of Globorotalia barisanensis LeRoy, Globorotalia fohsi Cushman and Ellisor, and related taxa. doi
  102. (2004). The Neogene Period. In: Gradstein, doi
  103. (2004). The Paleogene Period. In: doi
  104. (1973). The Pliocene time scale: calibration of planktonic foraminiferal and calcareous nannoplankton zones. doi
  105. (1985). The Pliocene–Pleistocene boundary.
  106. (1981). The relationship of Globigerinoides bisphericus Todd doi
  107. (2003). The Upper Paleocene–Lower Eocene of the Upper Nile Valley: Part 1: Stratigraphy: Micropaleontology, doi
  108. (1957). Transatlantic correlation of Miocene sediments. doi
  109. (2006). Tropical and subtropical planktonic foraminiferal zonation of the Eocene and Oligocene. doi
  110. (2006). Unit stratotypes for global stages: the Neogene perspective. doi
  111. (2009). What, if anything, is Quaternary. doi
  112. (2007). Widespread formation of cherts during the early Eocene climate optimum. doi
  113. (1965). Zonation based on planktonic foraminifera of Middle Miocene to Pliocene warm-water sediments. Boletin Informativo Asociacio'n Venezolana de Geologı'a. Minerarı'a y Petroleo 8,
  114. (1966). Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera: Boletin Informativo Asociacio'n Venezolana de Geologı'a. Minerarı'a y Petroleo 9,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.